* Step 1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus,times} and constructors {0,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          plus#(x,0()) -> c_1()
          plus#(x,s(y)) -> c_2(plus#(x,y))
          plus#(0(),x) -> c_3()
          plus#(s(x),y) -> c_4(plus#(x,y))
          times#(x,0()) -> c_5()
          times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            plus#(x,0()) -> c_1()
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(0(),x) -> c_3()
            plus#(s(x),y) -> c_4(plus#(x,y))
            times#(x,0()) -> c_5()
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,5}
        by application of
          Pre({1,3,5}) = {2,4,6}.
        Here rules are labelled as follows:
          1: plus#(x,0()) -> c_1()
          2: plus#(x,s(y)) -> c_2(plus#(x,y))
          3: plus#(0(),x) -> c_3()
          4: plus#(s(x),y) -> c_4(plus#(x,y))
          5: times#(x,0()) -> c_5()
          6: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
* Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(s(x),y) -> c_4(plus#(x,y))
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak DPs:
            plus#(x,0()) -> c_1()
            plus#(0(),x) -> c_3()
            times#(x,0()) -> c_5()
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:plus#(x,s(y)) -> c_2(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
             -->_1 plus#(0(),x) -> c_3():5
             -->_1 plus#(x,0()) -> c_1():4
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
          
          2:S:plus#(s(x),y) -> c_4(plus#(x,y))
             -->_1 plus#(0(),x) -> c_3():5
             -->_1 plus#(x,0()) -> c_1():4
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
          
          3:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
             -->_2 times#(x,0()) -> c_5():6
             -->_1 plus#(0(),x) -> c_3():5
             -->_1 plus#(x,0()) -> c_1():4
             -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):3
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
          
          4:W:plus#(x,0()) -> c_1()
             
          
          5:W:plus#(0(),x) -> c_3()
             
          
          6:W:times#(x,0()) -> c_5()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: times#(x,0()) -> c_5()
          4: plus#(x,0()) -> c_1()
          5: plus#(0(),x) -> c_3()
* Step 4: Decompose WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(s(x),y) -> c_4(plus#(x,y))
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              plus#(x,s(y)) -> c_2(plus#(x,y))
              plus#(s(x),y) -> c_4(plus#(x,y))
          - Weak DPs:
              times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
          - Weak TRS:
              plus(x,0()) -> x
              plus(x,s(y)) -> s(plus(x,y))
              plus(0(),x) -> x
              plus(s(x),y) -> s(plus(x,y))
              times(x,0()) -> 0()
              times(x,s(y)) -> plus(times(x,y),x)
          - Signature:
              {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
        
        Problem (S)
          - Strict DPs:
              times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
          - Weak DPs:
              plus#(x,s(y)) -> c_2(plus#(x,y))
              plus#(s(x),y) -> c_4(plus#(x,y))
          - Weak TRS:
              plus(x,0()) -> x
              plus(x,s(y)) -> s(plus(x,y))
              plus(0(),x) -> x
              plus(s(x),y) -> s(plus(x,y))
              times(x,0()) -> 0()
              times(x,s(y)) -> plus(times(x,y),x)
          - Signature:
              {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
** Step 4.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(s(x),y) -> c_4(plus#(x,y))
        - Weak DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: plus#(x,s(y)) -> c_2(plus#(x,y))
          
        The strictly oriented rules are moved into the weak component.
*** Step 4.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(s(x),y) -> c_4(plus#(x,y))
        - Weak DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_4) = {1},
          uargs(c_6) = {1,2}
        
        Following symbols are considered usable:
          {plus#,times#}
        TcT has computed the following interpretation:
               p(0) = 1                      
            p(plus) = 2 + 6*x2               
               p(s) = 1 + x1                 
           p(times) = 2*x2                   
           p(plus#) = 1 + 2*x2               
          p(times#) = 5 + 4*x1 + 5*x1*x2 + x2
             p(c_1) = 1                      
             p(c_2) = x1                     
             p(c_3) = 1                      
             p(c_4) = x1                     
             p(c_5) = 0                      
             p(c_6) = x1 + x2                
        
        Following rules are strictly oriented:
        plus#(x,s(y)) = 3 + 2*y        
                      > 1 + 2*y        
                      = c_2(plus#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         plus#(s(x),y) =  1 + 2*y                             
                       >= 1 + 2*y                             
                       =  c_4(plus#(x,y))                     
        
        times#(x,s(y)) =  6 + 9*x + 5*x*y + y                 
                       >= 6 + 6*x + 5*x*y + y                 
                       =  c_6(plus#(times(x,y),x),times#(x,y))
        
*** Step 4.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            plus#(s(x),y) -> c_4(plus#(x,y))
        - Weak DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 4.a:1.b:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            plus#(s(x),y) -> c_4(plus#(x,y))
        - Weak DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        and a lower component
          plus#(x,s(y)) -> c_2(plus#(x,y))
          plus#(s(x),y) -> c_4(plus#(x,y))
        Further, following extension rules are added to the lower component.
          times#(x,s(y)) -> plus#(times(x,y),x)
          times#(x,s(y)) -> times#(x,y)
**** Step 4.a:1.b:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 4.a:1.b:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1,2}
        
        Following symbols are considered usable:
          {plus#,times#}
        TcT has computed the following interpretation:
               p(0) = [0]                  
            p(plus) = [0]                  
               p(s) = [1] x1 + [2]         
           p(times) = [0]                  
           p(plus#) = [0]                  
          p(times#) = [10] x2 + [0]        
             p(c_1) = [0]                  
             p(c_2) = [0]                  
             p(c_3) = [0]                  
             p(c_4) = [0]                  
             p(c_5) = [0]                  
             p(c_6) = [1] x1 + [1] x2 + [0]
        
        Following rules are strictly oriented:
        times#(x,s(y)) = [10] y + [20]                       
                       > [10] y + [0]                        
                       = c_6(plus#(times(x,y),x),times#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 4.a:1.b:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 4.a:1.b:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
             -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
***** Step 4.a:1.b:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 4.a:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(s(x),y) -> c_4(plus#(x,y))
        - Weak DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            times#(x,s(y)) -> plus#(times(x,y),x)
            times#(x,s(y)) -> times#(x,y)
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: plus#(s(x),y) -> c_4(plus#(x,y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 4.a:1.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(s(x),y) -> c_4(plus#(x,y))
        - Weak DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            times#(x,s(y)) -> plus#(times(x,y),x)
            times#(x,s(y)) -> times#(x,y)
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_4) = {1}
        
        Following symbols are considered usable:
          {plus,times,plus#,times#}
        TcT has computed the following interpretation:
               p(0) = 0                   
            p(plus) = x1 + x2             
               p(s) = 1 + x1              
           p(times) = 2*x1*x2             
           p(plus#) = 2*x1 + 3*x2^2       
          p(times#) = 4 + 4*x1*x2 + 3*x1^2
             p(c_1) = 0                   
             p(c_2) = x1                  
             p(c_3) = 0                   
             p(c_4) = x1                  
             p(c_5) = 0                   
             p(c_6) = 1 + x2              
        
        Following rules are strictly oriented:
        plus#(s(x),y) = 2 + 2*x + 3*y^2
                      > 2*x + 3*y^2    
                      = c_4(plus#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         plus#(x,s(y)) =  3 + 2*x + 6*y + 3*y^2  
                       >= 2*x + 3*y^2            
                       =  c_2(plus#(x,y))        
        
        times#(x,s(y)) =  4 + 4*x + 4*x*y + 3*x^2
                       >= 4*x*y + 3*x^2          
                       =  plus#(times(x,y),x)    
        
        times#(x,s(y)) =  4 + 4*x + 4*x*y + 3*x^2
                       >= 4 + 4*x*y + 3*x^2      
                       =  times#(x,y)            
        
           plus(x,0()) =  x                      
                       >= x                      
                       =  x                      
        
          plus(x,s(y)) =  1 + x + y              
                       >= 1 + x + y              
                       =  s(plus(x,y))           
        
           plus(0(),x) =  x                      
                       >= x                      
                       =  x                      
        
          plus(s(x),y) =  1 + x + y              
                       >= 1 + x + y              
                       =  s(plus(x,y))           
        
          times(x,0()) =  0                      
                       >= 0                      
                       =  0()                    
        
         times(x,s(y)) =  2*x + 2*x*y            
                       >= x + 2*x*y              
                       =  plus(times(x,y),x)     
        
***** Step 4.a:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(s(x),y) -> c_4(plus#(x,y))
            times#(x,s(y)) -> plus#(times(x,y),x)
            times#(x,s(y)) -> times#(x,y)
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 4.a:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(s(x),y) -> c_4(plus#(x,y))
            times#(x,s(y)) -> plus#(times(x,y),x)
            times#(x,s(y)) -> times#(x,y)
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:plus#(x,s(y)) -> c_2(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
          
          2:W:plus#(s(x),y) -> c_4(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
          
          3:W:times#(x,s(y)) -> plus#(times(x,y),x)
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
          
          4:W:times#(x,s(y)) -> times#(x,y)
             -->_1 times#(x,s(y)) -> times#(x,y):4
             -->_1 times#(x,s(y)) -> plus#(times(x,y),x):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: times#(x,s(y)) -> times#(x,y)
          3: times#(x,s(y)) -> plus#(times(x,y),x)
          1: plus#(x,s(y)) -> c_2(plus#(x,y))
          2: plus#(s(x),y) -> c_4(plus#(x,y))
***** Step 4.a:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak DPs:
            plus#(x,s(y)) -> c_2(plus#(x,y))
            plus#(s(x),y) -> c_4(plus#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2
             -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1
          
          2:W:plus#(x,s(y)) -> c_2(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2
          
          3:W:plus#(s(x),y) -> c_4(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3
             -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: plus#(s(x),y) -> c_4(plus#(x,y))
          2: plus#(x,s(y)) -> c_2(plus#(x,y))
** Step 4.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
             -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          times#(x,s(y)) -> c_6(times#(x,y))
** Step 4.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(x,s(y)) -> c_6(times#(x,y))
        - Weak TRS:
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            plus(0(),x) -> x
            plus(s(x),y) -> s(plus(x,y))
            times(x,0()) -> 0()
            times(x,s(y)) -> plus(times(x,y),x)
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          times#(x,s(y)) -> c_6(times#(x,y))
** Step 4.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(x,s(y)) -> c_6(times#(x,y))
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: times#(x,s(y)) -> c_6(times#(x,y))
          
        The strictly oriented rules are moved into the weak component.
*** Step 4.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(x,s(y)) -> c_6(times#(x,y))
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {plus#,times#}
        TcT has computed the following interpretation:
               p(0) = [1]         
            p(plus) = [1] x2 + [1]
               p(s) = [1] x1 + [8]
           p(times) = [1] x2 + [1]
           p(plus#) = [1]         
          p(times#) = [1] x2 + [0]
             p(c_1) = [0]         
             p(c_2) = [0]         
             p(c_3) = [1]         
             p(c_4) = [1]         
             p(c_5) = [4]         
             p(c_6) = [1] x1 + [4]
        
        Following rules are strictly oriented:
        times#(x,s(y)) = [1] y + [8]     
                       > [1] y + [4]     
                       = c_6(times#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        
*** Step 4.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            times#(x,s(y)) -> c_6(times#(x,y))
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 4.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            times#(x,s(y)) -> c_6(times#(x,y))
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:times#(x,s(y)) -> c_6(times#(x,y))
             -->_1 times#(x,s(y)) -> c_6(times#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: times#(x,s(y)) -> c_6(times#(x,y))
*** Step 4.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus#,times#} and constructors {0,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^3))